Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.060
Filtrar
1.
Pediatr Allergy Immunol ; 34(12): e14047, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38146109

RESUMO

BACKGROUND: Significant risk factors for persistence of asthma later in life are family history of allergies, early allergic sensitization and bronchial hyperresponsiveness (BHR). The evolution of BHR in young children without allergic sensitization and with house dust mite allergy (HDM) was investigated. METHODS: In this retrospective analysis, electronic charts of 4850 young children with asthma and wheezy bronchitis between 2005 and 2018 were reviewed in order to study all patients ≤6 years with BHR assessed by methacholine provocation tests (MCT) at least once (n = 1175). Patients with more than two follow-up measurements were divided in group 1 (no allergic sensitization; n = 110) and group 2 (HDM allergy; n = 88). Additionally, skin prick test, exhaled nitrite oxide (eNO), and asthma treatment were analyzed. RESULTS: Forty-seven patients of group 1 aged median 4.3 years and 48 patients of group 2 aged median 4.7 years showed initially severe BHR <0.1 mg. At follow-up, patients with HDM were more likely to show persistence of severe BHR than non-sensitized patients (severe BHR group 1: n = 5 (10.6%) vs. group 2: n = 21 (43.8%), p < .001). In addition, 89.4% of group 1 had mild to moderate or no BHR, compared to only 56.2% of group 2. There was a significant difference in eN0 (median group 1: 9 ppb vs. group 2: 26 ppb, p < .001), at last follow-up. Age, sex, and asthma therapy had no effect on BHR. CONCLUSION: In young children without sensitization BHR normalizes, whereas HDM allergy indicates a persistence of asthma beyond infancy.


Assuntos
Asma , Hiper-Reatividade Brônquica , Alergia a Ácaros , Hipersensibilidade , Criança , Humanos , Pré-Escolar , Idoso , Estudos Retrospectivos , Testes de Provocação Brônquica , Asma/etiologia , Hiper-Reatividade Brônquica/etiologia , Poeira
2.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35044462

RESUMO

Group 2 innate lymphoid cells (ILC2s) have emerged as critical mediators in driving allergic airway inflammation. Here, we identified angiotensin (Ang) II as a positive regulator of ILC2s. ILC2s expressed higher levels of the Ang II receptor AT1a, and colocalized with lung epithelial cells expressing angiotensinogen. Administration of Ang II significantly enhanced ILC2 responses both in vivo and in vitro, which were almost completely abrogated in AT1a-deficient mice. Deletion of AT1a or pharmacological inhibition of the Ang II-AT1 axis resulted in a remarkable remission of airway inflammation. The regulation of ILC2s by Ang II was cell intrinsic and dependent on interleukin (IL)-33, and was associated with marked changes in transcriptional profiling and up-regulation of ERK1/2 phosphorylation. Furthermore, higher levels of plasma Ang II correlated positively with the abundance of circulating ILC2s as well as disease severity in asthmatic patients. These observations reveal a critical role for Ang II in regulating ILC2 responses and airway inflammation.


Assuntos
Angiotensina II/metabolismo , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Doenças Respiratórias/etiologia , Doenças Respiratórias/metabolismo , Animais , Biomarcadores , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Inflamação , Interleucina-33/metabolismo , Camundongos , Camundongos Knockout , Receptor Tipo 1 de Angiotensina/genética , Doenças Respiratórias/patologia
3.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1044-L1054, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668419

RESUMO

The proton-sensing receptor, ovarian cancer G protein-coupled receptor (OGR1), has been shown to be expressed in airway smooth muscle (ASM) cells and is capable of promoting ASM contraction in response to decreased extracellular pH. OGR1 knockout (OGR1KO) mice are reported to be resistant to the asthma features induced by inhaled allergen. We recently described certain benzodiazepines as OGR1 activators capable of mediating both procontractile and prorelaxant signaling in ASM cells. Here we assess the effect of treatment with the benzodiazepines lorazepam or sulazepam on the asthma phenotype in wild-type (WT) and OGR1KO mice subjected to inhaled house dust mite (HDM; Dermatophagoides pteronyssius) challenge for 3 wk. In contrast to previously published reports, both WT and OGR1KO mice developed significant allergen-induced lung inflammation and airway hyperresponsiveness (AHR). In WT mice, treatment with sulazepam (a Gs-biased OGR1 agonist), but not lorazepam (a balanced OGR1 agonist), prevented allergen-induced AHR, although neither drug inhibited lung inflammation. The protection from development of AHR conferred by sulazepam was absent in OGR1KO mice. Treatment of WT mice with sulazepam also resulted in significant inhibition of HDM-induced collagen accumulation in the lung tissue. These findings suggest that OGR1 expression is not a requirement for development of the allergen-induced asthma phenotype, but OGR1 can be targeted by the Gs-biased OGR1 agonist sulazepam (but not the balanced agonist lorazepam) to protect from allergen-induced AHR, possibly mediated via suppression of chronic bronchoconstriction and airway remodeling in the absence of effects on airway inflammation.


Assuntos
Alérgenos/toxicidade , Asma/patologia , Hiper-Reatividade Brônquica/patologia , Broncoconstrição , Citocinas/metabolismo , Pneumonia/patologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Ansiolíticos/farmacologia , Asma/etiologia , Asma/metabolismo , Benzodiazepinas/farmacologia , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Feminino , Lorazepam/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Pneumonia/etiologia , Pneumonia/metabolismo , Pyroglyphidae
4.
Sci Rep ; 11(1): 17584, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475448

RESUMO

In vivo presentation of airway hyper-responsiveness (AHR) at the different time points of the allergic reaction is not clearly understood. The purpose of this study was to investigate how AHR manifests in the airway and the lung parenchyma in vivo following exposure to different stimuli and in the early and late phases of asthma after allergen exposure. Ovalbumin (OVA)-induced allergic asthma model was established using 6-week female BALB/c mice. Enhanced pause was measured with a non-invasive method to assess AHR. The dynamic changes of the airway and lung parenchyma were evaluated with ultra-high-resolution computed tomography (128 multi-detector, 1024 × 1024 matrix) for 10 h. While the methacholine challenge showed no grossly visible changes in the proximal airway and lung parenchyma despite provoking AHR, the OVA challenge induced significant immediate changes manifesting as peribronchial ground glass opacities, consolidations, air-trapping, and paradoxical proximal airway dilatations. After resolution of immediate response, multiple episodes of AHRs occurred with paradoxical proximal airway dilatation and peripheral air-trapping in late phase over a prolonged time period in vivo. Understanding of airflow limitation based on the structural changes of asthmatic airway would be helpful to make an appropriate drug delivery strategy for the treatment of asthma.


Assuntos
Asma/diagnóstico por imagem , Hiper-Reatividade Brônquica/diagnóstico por imagem , Hipersensibilidade Respiratória/diagnóstico por imagem , Animais , Asma/induzido quimicamente , Asma/patologia , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/patologia , Modelos Animais de Doenças , Feminino , Pulmão/diagnóstico por imagem , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/patologia , Tomografia Computadorizada por Raios X
5.
Mol Med Rep ; 24(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34542166

RESUMO

Cycloastragenol (CAG), a secondary metabolite from the roots of Astragalus zahlbruckneri, has been reported to exert anti­inflammatory effects in heart, skin and liver diseases. However, its role in asthma remains unclear. The present study aimed to investigate the effect of CAG on airway inflammation in an ovalbumin (OVA)­induced mouse asthma model. The current study evaluated the lung function and levels of inflammation and autophagy via measurement of airway hyperresponsiveness (AHR), lung histology examination, inflammatory cytokine measurement and western blotting, amongst other techniques. The results demonstrated that CAG attenuated OVA­induced AHR in vivo. In addition, the total number of leukocytes and eosinophils, as well as the secretion of inflammatory cytokines, including interleukin (IL)­5, IL­13 and immunoglobulin E were diminished in bronchoalveolar lavage fluid of the OVA­induced murine asthma model. Histological analysis revealed that CAG suppressed inflammatory cell infiltration and goblet cell secretion. Notably, based on molecular docking simulation, CAG was demonstrated to bind to the active site of autophagy­related gene 4­microtubule­associated proteins light chain 3 complex, which explains the reduced autophagic flux in asthma caused by CAG. The expression levels of proteins associated with autophagy pathways were inhibited following treatment with CAG. Taken together, the results of the present study suggest that CAG exerts an anti­inflammatory effect in asthma, and its role may be associated with the inhibition of autophagy in lung cells.


Assuntos
Antiasmáticos/farmacologia , Asma/etiologia , Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Sapogeninas/farmacologia , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Biomarcadores , Biópsia , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Sapogeninas/química , Relação Estrutura-Atividade
6.
Respir Res ; 22(1): 252, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556106

RESUMO

Bronchial hyperresponsiveness is a typical, but non-specific feature of cough variant asthma (CVA). This study aimed to determine whether bronchial hyperresponsiveness may be considered as a predictor of CVA in non-smoking adults with chronic cough (CC). The study included 55 patients with CC and bronchial hyperresponsiveness confirmed in the methacholine provocation test, in whom an anti-asthmatic, gradually intensified treatment was introduced. The diagnosis of CVA was established if the improvement in cough severity and cough-related quality of life in LCQ were noted.The study showed a high positive predictive value of bronchial hyperresponsiveness in this population. Cough severity and cough related quality of life were not related to the severity of bronchial hyperresponsiveness in CVA patients. A poor treatment outcome was related to a low baseline capsaicin threshold and the occurrence of gastroesophageal reflux-related symptoms. In conclusion, bronchial hyperresponsiveness could be considered as a predictor of cough variant asthma in non-smoking adults with CC.


Assuntos
Asma/diagnóstico , Hiper-Reatividade Brônquica/diagnóstico , Testes de Provocação Brônquica/métodos , Tosse/diagnóstico , Idoso , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Asma/complicações , Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/etiologia , Doença Crônica , Estudos de Coortes , Tosse/tratamento farmacológico , Tosse/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos
7.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445491

RESUMO

In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.


Assuntos
Hiper-Reatividade Brônquica/tratamento farmacológico , Cloreto de Metacolina/administração & dosagem , Infecções por Orthomyxoviridae/complicações , Ovalbumina/imunologia , Pyroglyphidae/imunologia , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Hiper-Reatividade Brônquica/etiologia , Claudina-1/metabolismo , Regulação para Baixo , Feminino , Vírus da Influenza A/patogenicidade , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Ovalbumina/administração & dosagem , Resultado do Tratamento
8.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L236-L247, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009030

RESUMO

Obesity-related asthma often presents with more severe symptoms than non-obesity-related asthma and responds poorly to current treatments. Both insulin resistance and hyperinsulinemia are common in obesity. We have shown that increased insulin mediates airway hyperreactivity in diet-induced obese rats by causing neuronal M2 muscarinic receptor dysfunction, which normally inhibits acetylcholine release from parasympathetic nerves. Decreasing insulin with streptozotocin prevented airway hyperreactivity and M2 receptor dysfunction. The objective of the present study was to investigate whether pioglitazone, a hypoglycemic drug, prevents airway hyperreactivity and M2 receptor dysfunction in obese rats. Male rats fed a low- or high-fat diet were treated with pioglitazone or PBS by daily gavage. Body weight, body fat, fasting insulin, and bronchoconstriction and bradycardia in response to electrical stimulation of vagus nerves and to aerosolized methacholine were recorded. Pilocarpine, a muscarinic receptor agonist, was used to measure M2 receptor function. Rats on a high-fat diet had potentiated airway responsiveness to vagal stimulation and dysfunctional neuronal M2 receptors, whereas airway responsiveness to methacholine was unaffected. Pioglitazone reduced fasting insulin and prevented airway hyperresponsiveness and M2 receptor dysfunction but did not change inflammatory cytokine mRNA expression in alveolar macrophages. High-fat diet, with and without pioglitazone, had tissue-specific effects on insulin receptor mRNA expression. In conclusion, pioglitazone prevents vagally mediated airway hyperreactivity and protects neuronal M2 muscarinic receptor function in obese rats.


Assuntos
Hiper-Reatividade Brônquica/tratamento farmacológico , Hiperinsulinismo/tratamento farmacológico , Insulina/metabolismo , Neurônios/efeitos dos fármacos , Obesidade/complicações , Pioglitazona/farmacologia , Receptor Muscarínico M2/metabolismo , Animais , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Dieta Hiperlipídica/efeitos adversos , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Hipoglicemiantes/farmacologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M2/genética
9.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33661765

RESUMO

ORM1-like 3 (ORMDL3) has strong genetic linkage to childhood onset asthma. To determine whether ORMDL3 selective expression in airway smooth muscle (ASM) influences ASM function, we used Cre-loxP techniques to generate transgenic mice (hORMDL3Myh11eGFP-cre), which express human ORMDL3 selectively in smooth muscle cells. In vitro studies of ASM cells isolated from the bronchi of hORMDL3Myh11eGFP-cre mice demonstrated that they developed hypertrophy (quantitated by FACS and image analysis), developed hyperplasia (assessed by BrdU incorporation), and expressed increased levels of tropomysin proteins TPM1 and TPM4. siRNA knockdown of TPM1 or TPM4 demonstrated their importance to ORMDL3-mediated ASM proliferation but not hypertrophy. In addition, ASM derived from hORMDL3Myh11eGFP-cre mice had increased contractility to histamine in vitro, which was associated with increased levels of intracellular Ca2+; increased cell surface membrane Orai1 Ca2+ channels, which mediate influx of Ca2+ into the cytoplasm; and increased expression of ASM contractile genes sarco/endoplasmic reticulum Ca2+ ATPase 2b and smooth muscle 22. In vivo studies of hORMDL3Myh11eGFP-cre mice demonstrated that they had a spontaneous increase in ASM and airway hyperreactivity (AHR). ORMDL3 expression in ASM thus induces changes in ASM (hypertrophy, hyperplasia, increased contractility), which may explain the contribution of ORMDL3 to the development of AHR in childhood onset asthma, which is highly linked to ORMDL3 on chromosome 17q12-21.


Assuntos
Proteínas de Membrana/genética , Músculo Liso/patologia , Tropomiosina/genética , Animais , Asma/genética , Asma/patologia , Hiper-Reatividade Brônquica/etiologia , Cálcio/metabolismo , Proliferação de Células , Células Cultivadas , Histamina/farmacologia , Humanos , Hiperplasia , Hipertrofia , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Tropomiosina/metabolismo
10.
FASEB J ; 35(5): e21428, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774861

RESUMO

This study was conducted to investigate whether a transient receptor potential ankyrin 1 (TRPA1) antagonist (HC-030031) can reduce airway inflammation and hyperresponsiveness in a murine allergic rhinitis (AR) model. BALB/c mice were sensitized and challenged by ovalbumin (OVA) to induce AR. HC-030031 or vehicle was administrated to mice via intraperitoneal injection prior to OVA challenges. Nose-scratching events, histopathologic alterations of the airways, and bronchial hyperresponsiveness (BHR) were assessed. Differential cells and proinflammatory cytokines in the nasal lavage (NAL) and bronchoalveolar lavage (BAL) fluid were measured. Expressions of TRPA1 in nasal mucosa were examined by immunohistochemistry. TRPA1-expressing vagal neurons were labeled by immunofluorescent staining. HC-030031-treated AR mice had markedly reduced type-2 inflammation in nasal mucosa and ameliorated-nose-scratching events than AR mice received vehicle. HC-030031 treatment also dramatically reduced leucocyte numbers and IL-8 level in the BAL fluid, inhibited lower airway remodeling and fibrosis, and nearly abolished BHR. HC-0300031 treatment significantly inhibited the upregulated number of TRPA1 expressing nasal epithelial cells and TRPA1 expressing sensory neurons, leading to downregulation of SP in both upper and lower airways. Targeting TRPA1 may represent a promising strategy for treating AR and AR-related asthma.


Assuntos
Asma/prevenção & controle , Hiper-Reatividade Brônquica/prevenção & controle , Modelos Animais de Doenças , Inflamação/prevenção & controle , Rinite Alérgica/complicações , Canal de Cátion TRPA1/antagonistas & inibidores , Remodelação das Vias Aéreas , Animais , Asma/etiologia , Asma/patologia , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/patologia , Feminino , Inflamação/etiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C
11.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L545-L556, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33501891

RESUMO

Obesity increases incidence and severity of asthma but the molecular mechanisms are not completely understood. Hyperinsulinemia potentiates vagally induced bronchoconstriction in obese rats. Since bronchoconstriction results from airway smooth muscle contraction, we tested whether insulin changed agonist-induced airway smooth muscle contraction. Obesity-prone and resistant rats were fed a low-fat diet for 5 wk and treated with insulin (Lantus, 3 units/rat sc) 16 h before vagally induced bronchoconstriction was measured. Ex vivo, contractile responses to methacholine were measured in isolated rat tracheal rings and human airway smooth muscle strips before and after incubation (0.5-2 h) with 100 nM insulin or 13.1 nM insulin like growth factor-1 (IGF-1). M2 and M3 muscarinic receptor mRNA expression was quantified by qRT-PCR and changes in intracellular calcium were measured in response to methacholine or serotonin in isolated rat tracheal smooth muscle cells treated with 1 µM insulin. Insulin, administered to animals 16 h prior, potentiated vagally induced bronchoconstriction in both obese-prone and resistant rats. Insulin, not IGF-1, significantly increased methacholine-induced contraction of rat and human isolated airway smooth muscle. In cultured rat tracheal smooth muscle cells, insulin significantly increased M2, not M3, mRNA expression and enhanced methacholine- and serotonin-induced increase in intracellular calcium. Insulin alone did not cause an immediate increase in intracellular calcium. Thus, insulin acutely potentiated agonist-induced increase in intracellular calcium and airway smooth muscle contraction. These findings may explain why obese individuals with hyperinsulinemia are prone to airway hyperreactivity and give insights into future targets for asthma treatment.


Assuntos
Hiper-Reatividade Brônquica/patologia , Broncoconstrição , Hiperinsulinismo/complicações , Insulina/efeitos adversos , Cloreto de Metacolina/farmacologia , Contração Muscular , Músculo Liso/patologia , Animais , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Cálcio/metabolismo , Humanos , Hipoglicemiantes/efeitos adversos , Masculino , Agonistas Muscarínicos/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Obesidade/complicações , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/patologia , Nervo Vago/fisiopatologia
13.
Probl Radiac Med Radiobiol ; 25: 531-542, 2020 Dec.
Artigo em Inglês, Ucraniano | MEDLINE | ID: mdl-33361859

RESUMO

OBJECTIVE: to determine the relationship between polymorphisms of glutathione S-transferase gene family andbronchial hyperreactivity in children living in radioactively contaminated areas. MATERIALS AND METHODS: School age children-residents of radioactively contaminated areas (RCA), without clinicalsigns of respiratory pathology were examined. Molecular genetic studies were carried out by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) for further analysis. The GSTT1, GSTM1 gene deletion polymorphism was investigated using multiplex PCR. PCR and PCR-RFLP analyses were performed in the studyof the GSTP1 gene A313G polymorphism. The ventilation lung capacity was examined by the pneumotachographicmethod according to the analysis of «the flow-volume¼ loop. The pharmacologic inhalation test with bronchodilator drug, affecting the ß2-adrenergic lung receptors was used to detect the early changes in the ventilation lungcapacity - the bronchial hyperreactivity (latent and nonlatent bronchospasm). RESULTS: Molecular genetic studies showed that the GSTM1 gene deletion genotype and the GSTP1 gene A313G polymorphism were found significantly more often in the subgroup of children with bronchial hyperreactivity living inRCA than in children without bronchial hyperreactivity and children of the control group. The frequency of GSTT1deletion polymorphism did not have a statistically significant difference in all subgroups. CONCLUSIONS: The GSTM1 gene deletion polymorphism and the GSTP1 gene A313G genotype may be a risk factor fordeveloping bronchial hyperreactivity in children living under adverse environmental conditions, including radioactively contaminated areas.


Assuntos
Hiper-Reatividade Brônquica/genética , Acidente Nuclear de Chernobyl , Predisposição Genética para Doença , Glutationa Transferase/genética , Exposição à Radiação/efeitos adversos , Adolescente , Alelos , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/fisiopatologia , Testes de Provocação Brônquica , Estudos de Casos e Controles , Criança , Feminino , Expressão Gênica , Frequência do Gene , Humanos , Masculino , Polimorfismo de Fragmento de Restrição , Radiação Ionizante , Testes de Função Respiratória , Ucrânia/epidemiologia
14.
J Cell Mol Med ; 24(24): 14381-14391, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33145961

RESUMO

Diabetes has been reported to modulate the airway smooth muscle reactivity and lead to attenuation of allergic inflammatory response in the lungs. In this study, we aimed to study the effect of insulin on cell activation and airway responsiveness in patients with diabetes mellitus (DM). The airway contraction in rat model groups including a non-DM group, a non-DM+INDUCTION group, a DM+INDUCTION group and a DM+INDUCTION+INSULIN group was measured to observe the effect of insulin on airway responsiveness. Radioenzymatic assay was conducted to measure the levels of histamine, and ELISA assay was conducted to measure bronchial levels of interleukin (IL)-1b, tumour necrosis factor (TNF)-a, cytokine-induced neutrophil chemoattractant (CINC)-1, P-selectin and ß-hexosaminidase. The tension in the main and intrapulmonary bronchi of DM+INDUCTION rats was lower than that of the non-DM+INDUCTION rats, whereas the treatment of insulin partly restored the normal airway responsiveness to OA in DM rats. The release of histamine was remarkably suppressed in DM+INDUCTION rats but was recovered by the insulin treatment. Also, OA significantly increased the levels of IL-1b, TNF-a, CINC-1 and P-selectin in non-DM rats, whereas insulin treatment in DM+INDUCTION rats partly restored the normal levels of IL-1b, TNF-a, CINC-1 and P-selectin in DM rats. Moreover, the expression of IR and IGF1R was evidently suppressed in DM rats, with the methylation of both IR and IGF1R promoters was aggravated in DM rats. Therefore, we demonstrated that DM-induced hypermethylation inhibited mast cell activation and airway responsiveness, which could be reversed by insulin treatment.


Assuntos
Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Alérgenos/imunologia , Animais , Asma/etiologia , Asma/metabolismo , Asma/fisiopatologia , Biomarcadores , Hiper-Reatividade Brônquica/fisiopatologia , Citocinas/metabolismo , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Histamina/biossíntese , Imunoglobulina E/imunologia , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Metilação , Ratos , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
15.
Int J Mol Sci ; 21(20)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050549

RESUMO

The essential contribution of CD4+ T cells in allergic airway diseases has been demonstrated, especially by using various murine models of antigen-induced airway inflammation. In addition to antigen-immunized mouse models employing mast cell-deficient mice and CD4+ T cell-depleting procedure, antigen-specific CD4+ T cell transfer models have revealed the possible development of allergic inflammation solely dependent on CD4+ T cells. Regardless of the classical Th1/Th2 theory, various helper T cell subsets have the potential to induce different types of allergic inflammation. T cell receptor (TCR)-transgenic (Tg) mice have been used for investigating T cell-mediated immune responses. Besides, we have recently generated cloned mice from antigen-specific CD4+ T cells through somatic cell nuclear transfer. In contrast to TCR-Tg mice that express artificially introduced TCR, the cloned mice express endogenously regulated antigen-specific TCR. Upon antigen exposure, the mite antigen-reactive T cell-cloned mice displayed strong airway inflammation accompanied by bronchial hyperresponsiveness in a short time period. Antigen-specific CD4+ T cell-cloned mice are expected to be useful for investigating the detailed role of CD4+ T cells in various allergic diseases and for evaluating novel anti-allergic drugs.


Assuntos
Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Suscetibilidade a Doenças , Animais , Biomarcadores , Hiper-Reatividade Brônquica/diagnóstico , Comunicação Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Humanos , Imunoglobulina E/imunologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Genome Med ; 12(1): 64, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690065

RESUMO

BACKGROUND: A challenge in the post-GWAS era is to assign function to disease-associated variants. However, available resources do not include all tissues or environmental exposures that are relevant to all diseases. For example, exaggerated bronchoconstriction of airway smooth muscle cells (ASMCs) defines airway hyperresponsiveness (AHR), a cardinal feature of asthma. However, the contribution of ASMC to genetic and genomic studies has largely been overlooked. Our study aimed to address the gap in data availability from a critical tissue in genomic studies of asthma. METHODS: We developed a cell model of AHR to discover variants associated with transcriptional, epigenetic, and cellular responses to two AHR promoting cytokines, IL-13 and IL-17A, and performed a GWAS of bronchial responsiveness (BRI) in humans. RESULTS: Our study revealed significant response differences between ASMCs from asthma cases and controls, including genes implicated in asthma susceptibility. We defined molecular quantitative trait loci (QTLs) for expression (eQTLs) and methylation (meQTLs), and cellular QTLs for contractility (coQTLs) and performed a GWAS of BRI in human subjects. Variants in asthma GWAS were significantly enriched for ASM QTLs and BRI-associated SNPs, and near genes enriched for ASM function, many with small P values that did not reach stringent thresholds of significance in GWAS. CONCLUSIONS: Our study identified significant differences between ASMCs from asthma cases and controls, potentially reflecting trained tolerance in these cells, as well as a set of variants, overlooked in previous GWAS, which reflect the AHR component of asthma.


Assuntos
Asma/etiologia , Asma/metabolismo , Citocinas/genética , Miócitos de Músculo Liso/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/patologia , Biomarcadores , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Citocinas/metabolismo , Metilação de DNA , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco , Adulto Jovem
17.
Rev Mal Respir ; 37(6): 462-473, 2020 Jun.
Artigo em Francês | MEDLINE | ID: mdl-32487422

RESUMO

INTRODUCTION: A significant portion of symptoms in some lung diseases results from an excessive constriction of airways due to the contraction of smooth muscle and bronchial hyperresponsiveness. A better understanding of the extracellular molecules that control smooth muscle contractility is necessary to identify the underlying causes of the problem. STATE OF KNOWLEDGE: Almost a hundred molecules, some of which newly identified, influence the contractility of airway smooth muscle. While some molecules activate the contraction, others activate the relaxation, thus acting directly as bronchoconstrictors and bronchodilators, respectively. Other molecules do not affect contraction directly but rather influence it indirectly by modifying the effect of bronchoconstrictors and bronchodilators. These are called bronchomodulators. Some of these bronchomodulators increase the contractile effect of bronchoconstrictors and could thus contribute to bronchial hyperresponsiveness. PROSPECTS: Considering the high number of molecules potentially involved, as well as the level of functional overlap between some of them, identifying the extracellular molecules responsible for excessive airway constriction in a patient is a major contemporary challenge.


Assuntos
Hiper-Reatividade Brônquica/etiologia , Broncoconstritores/farmacologia , Broncodilatadores/farmacologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Animais , Asma/etiologia , Asma/metabolismo , Asma/fisiopatologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/fisiologia , Broncoconstritores/metabolismo , Broncodilatadores/metabolismo , Espaço Extracelular/metabolismo , Humanos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Sistema Respiratório/fisiopatologia
18.
Workplace Health Saf ; 68(10): 491-500, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32364022

RESUMO

Background: Although nurses are well described as being at risk of work-related asthma, certified nurse aides (CNAs) are understudied. Using a statewide registry in Texas, we measured prevalence and risk factors for work-related asthma and bronchial hyperresponsiveness (BHR) symptoms among CNAs. Methods: For this cross-sectional study, a questionnaire was mailed to a random sample of CNAs (n = 2,114) identified through the Texas Department of Aging and Disability Services registry, working in health care during 2016-2017, to collect data on job history, asthma symptoms, and sociodemographics. Two outcomes were defined: (a) new-onset asthma (NOA) after entry into the health care field and (b) BHR-related symptoms. Job exposures to cleaning compounds and tasks were assigned using an externally coded CNA-specific job-exposure matrix. Logistic regression modeling was used to measure associations between cleaning exposures and the two asthma outcomes. Findings: The final sample consisted of 413 CNAs (response rate 21.6%). The prevalence of NOA and BHR symptoms were 3.6% and 26.9%, respectively. In adjusted models, elevated odds for BHR symptoms were observed for patient care cleaning (odds ratio [OR] = 1.71, 95% confidence interval [CI] = [0.45, 6.51]), instrument cleaning (OR = 1.33, 95% CI = [0.66, 2.68]), building-surface cleaning (OR = 1.39, 95% CI = [0.35, 5.60]), exposure to glutaraldehyde/orthophthalaldehyde (OR = 1.33, 95% CI = [0.66, 2.68]), and latex glove use during 1992-2000 (OR = 1.62, 95% CI = [0.84, 3.12]). There were too few NOA cases to warrant meaningful regression analysis. Conclusion/Application to Practice: Although not statistically significant, we observed elevated odds of BHR symptoms among nurse aides, associated with cleaning exposures, suggesting this is an at-risk group of health care professionals for work-related respiratory disease, meriting further study.


Assuntos
Asma Ocupacional/epidemiologia , Hiper-Reatividade Brônquica/epidemiologia , Assistentes de Enfermagem/estatística & dados numéricos , Exposição Ocupacional/estatística & dados numéricos , Adulto , Asma Ocupacional/etiologia , Hiper-Reatividade Brônquica/etiologia , Estudos Transversais , Desinfetantes/efeitos adversos , Feminino , Glutaral/efeitos adversos , Humanos , Látex/efeitos adversos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Prevalência , Fatores de Risco , Inquéritos e Questionários , Texas/epidemiologia , o-Ftalaldeído/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...